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1 About

Nanoindentation instruments often include data processing software, however, this may not
be sufficient. The desired evaluation method may not implemented, the implementations may
not be suitable for the given physical problem, the description of the implementation may be
insufficient or more information about uncertainties is sought for.
This toolbox aims to fill this gap (at least partly). It is open-source, so the implementation
can be checked by the user. It can also be easily expanded to include also other evalua-
tion methods. Uncertainties are provided both in the standard framework of uncertainty
propagation and also using Monte Carlo simulations.
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Visit Niget home page at http://nanometrologie.cz/niget.

2 System requirements, compiling, and installation

Niget sources as well as binaries for 32-bit Windows systems can be downloaded from its home
page at http://nanometrologie.cz/niget. The software is written mainly in C language
using GTK+ (version 2) toolkit (http://www.gtk.org) and libraries from Gwyddion data
analysis software (http://gwyddion.net). Some tools (Oliver-Pharr ODR, Hertz ODR, and
the two slopes method) use orthogonal distance regression (ODR) which includes Fortran
code from ODRPACK95 project, available at http://www.netlib.org/toms/869.zip.

2.1 Linux

There are no distribution packages available, and users are supposed to compile Niget from
source.

Requirements

1. C compiler (GNU gcc or Intel icc)

2. (optional) Fortran compiler (GNU gfortran or Intel ifort)

3. CMake

4. GNU Make or compatible

5. pkg-config

6. GTK2 (and its dependences), including development libraries

7. (preferable) Gwyddion development libraries (see http://gwyddion.net/download.

php for distribution-specific instructions; FFTW3 and GtkGLExt development libraries
may be also required as dependences)

If paths to Gwyddion libraries and includes are not found by CMake or provided by user,
a recent version of Gwyddion is automatically downloaded and built. Please note that some
additional tools (patch) and libraries (e.g. libfftw3) might still be required.

Compiling with CMake In the Niget source directory, proceed as follows:

1. mkdir build (out-of-tree builds are preferred with CMake)

2. cd build

3. cmake .. (CMake looks for compilers and libraries, and configures the build)

4. make

This compiles Niget using default configuration with GNU compilers and ODR enabled.
Optional configuration parameters can be set by adding -D OPTION=VALUE to the cmake

command (cmake -D OPTION1=VALUE1 ... -D OPTIONn=VALUEn ..). Presently available
options are:
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1. DEBUG – ON (default) / OFF: make debug build

2. INTEL – ON / OFF (default): compile using Intel compilers (icc and ifort)

3. FORTRAN – ON (default) / OFF: include ODRPACK95, Oliver-Pharr ODR, Hertz ODR,
and Two slopes methods

4. VERBOSE – ON / OFF (default): increase verbosity for debugging purposes

After running cmake, the options above are stored into CMake’s cache in the build direc-
tory, and need not be specified with further CMake runs (or have to be specified explicitly if
a change is desired). Note: until the code is sufficiently tested, DEBUG is ON by default, and
release build must be triggered manually.

After the software compiles successfully, the niget binary, created in the build directory,
can be run.

2.2 Windows

Niget Windows 32-bit binaries are distributed in a single zip-file, which contains all the
required libraries. This is the preferred way for Windows users to start using Niget.

2.2.1 Microsoft Visual Studio

Niget can be compiled natively on Windows platforms. A solution for Microsoft Visual Studio
2015 is provided in msvc2015/indent-toolbox.sln. Since this Visual Studio version does
not provide a Fortran compiler, the ODR dependent tools are excluded into a separate project,
which can be compiled as a dynamic link library using Intel Fortran compiler. Anyway, due
to GTK2 and Gwyddion development libraries being needed for compilation, we discourage
the users from compiling from source on Windows.

Requirements

1. Microsoft Visual Studio 2015

2. (Optional) Intel Fortran compiler

3. GTK2 Windows bundle (http://gtk-win.sourceforge.net/home)

4. Gwyddion development libraries; see http://gwyddion.net/documentation/user-guide-en/
installation-compiling-msvc.html for instructions on compiling Gwyddion on Win-
dows

2.2.2 MinGW suite

Compiling using CMake and MinGW suite in MSYS2 environment has also been tested and
is currently used to provide the Windows builds of Niget. Unfortunately, no straightforward
procedure is available at the moment.
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3 Main Window

Niget has a graphical user interface (GUI) and can be started either from the command line
(Linux) or using the icon. The main window shows all currently available methods as different
tabs and a row of general function buttons. The tabs are inactive at the start of the program
and get activated when a file is opened.

Figure 1: Main window

The buttons are:

• Open: Load a file in a chosen format. Currently, only files of one of the predefined
plain-text formats. can be opened. Each file should contain only one loading-unloading
curve. Files with more than one indentation should load as well, but the behaviour may
be “surprising”. Currently, only the decimal point is supported as the decimal mark.
Lines that do not correspond to the given format, because they are, e.g., empty or hold
comments, are skipped.
WARNING: The units MUST agree with the given format or you will get nonsense
numerical results!

- Time (s) Depth (nm) Load (mN): first three columns correspond to time (which
is skipped), depth in nm and load in mN.

- Time (s) Depth (nm) Load (uN): first three columns correspond to time (which
is skipped), depth in nm and load in µN.
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- Depth (nm) Load (uN): first two columns correspond to depth in nm and load
in µN.

- Depth (nm) Load (mN): first two columns correspond to depth in nm and load
in mN.

- Load (mN) Depth (nm): first two columns correspond to load in mN and depth
in nm.

- Load (uN) Depth (nm): first two columns correspond to load in µN and depth
in nm.

- Niget: native format of Niget.

The file cannot be loaded if it’s not in the given format or if it contains inf or nan

values.

• Export all data & results: Save the processed indentation data and results from all
methods. The user chooses a basename to which a suffix is appended for each method.
A file is created even if there are no meaningful results for a method.

• Help: Open HTML documentation in an associated browser.

• About: Display additional information about the software.

• Quit: Exit the program.

Note that when the program exits (either by pressing Quit or closing the main window),
no results are saved.
The program keeps its own few settings for user comfort. These are saved in niget_settings.cfg

in the user configuration directory.

4 Data & area

In this tab the user can set the contact point as well as other important points of the indenta-
tion process, mechanical properties of the tip and sample, indenter noise and define the area
function. After successfully loading a file, the software creates the force-distance diagram
from the data, and attempts to automatically detect the loading, hold and unloading parts
of the data.

4.1 Window

The window consists of the following:

• Info displays the maximum depth and force during the indentation determined as in
section 4.2.

• Switch graph to . . . switches between two display modes: force as a function of depth
(F-d) and force and depth as functions of the (pseudo)time (F,d-t). The index of the
data point is used instead of the real time, which is not read from the file. In the second
case, both curves are displayed dimensionless, and scaled just to provide good visual
resolution.
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Figure 2: Force-distance diagram after automatic split

• Contact-load-hold-unload Allows to manually split the data into the loading, hold and
unloading parts:

- Contact point: determines the beginning of the loading curve. The depth and force
at this point hc and Fc are subtracted from the loading-unloading curves.

- Hold begin

- Unload begin

- Unload end: define the end of the unloading part. By default, the data are trun-
cated at zero depth.

Whether the point was set automatically or manually is shown. Note, that if the division
of the data into the different parts is changed, all analysis results are deleted!

• Save preprocessed data saves the data including the selected split of the data in the
native format Niget.

• Area

- Area function button: opens a separate dialog for the definition of the area func-
tion, see 4.3

- displays the area function used currently.
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Figure 3: Manual definition of points in force-distance in time view

• Sample & indenter The parameters here are Poisson’s value of the sample, Young’s
modulus of the indenter, Poisson’s value of the indenter and the noise of the displace-
ment and load sensors. The default values are 0.3, 1141 GPa, and 0.07. The first is a
reasonable estimate of the often unknown Poisson’s value for many materials, the other
two values are the literature values for diamond which is a common indenter tip mate-
rial. The noise of the sensors is used for the fitting procedures and for the uncertainty
analysis. These values are saved in settings and can be reset to their default values.

• Graph displays the indentation curve. Stepwise zooming/unzooming can be performed
by selecting a range with the mouse and pressing the Zoom/ Unzoom buttons. The
graph is restored to its original size by the Restore button. The zooming procedure is
independent in the two regimes (F-d vs. F,d-t).

4.2 Maximum depth and force

The maximum force Fmax is the maximum force value found in the unloading data. The
maximum depth hmax is the corresponding depth, NOT the maximum depth value!
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4.3 Area function

The area function can be given either in form of a polynomial of the form

A(h) = c2h
2 + c1h+ c1/2h

1/2 + c1/4h
1/4 + c1/8h

1/8 + c1/16h
1/16, (1)

or a raw data file can be loaded, which will be (linearly) interpolated in subsequent calcu-
lations. The format of the area data file MUST be two columns: first column depth in nm,
second column area in nm2.
The area function is shown for user information. A warning is issued if a raw data file is used
and any of the methods extrapolates the area. The coefficients of a polynomial area function
are saved in the settings file.

For specific formats, the coefficients can also be loaded directly from a file. Currently, this
should work for an .ara file (as exported from a Hysitron instrument) or for an .ind file (as
exported from a UNHT Anton Paar instrument). This is under testing and may not work
correctly for other versions.

Figure 4: Area function dialog

5 Oliver Pharr

For a definition of the Oliver Pharr method see [1].

5.1 Window

The window consists of several blocks:

• Info displays the maximum depth and force during the indentation

• Parameters shows the selected range in nm and in % of the maximum force, the cor-
rection β and the fit buttons.

- The fitting range can be selected either using the mouse or typing in the range
entries. The range can be defined either in nm or in percent of the maximum force.
It is often recommended to use the range 0.5 - 15 % Fmax for the hp fit and 40 -
98 % Fmax for the S fit, see section 5.2.
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Figure 5: Oliver-Pharr analysis

- The parameter β accounts for any deviations from the axisymmetric case and is
used in the calculation of the reduced modulus in equation (10). Currently, the
default value is the value for three-sided pyramides β = 1.034. The value supplied
by the user is saved in the settings and can be reset to its default value.

- fit buttons for the two fits, see section 5.2 for details of the calculation

• Results displays all results in the following order: the residual depth hp, the power m of
the power law function, the parameter ε, the contact depth hc, the slope S, the contact
area Ap(hc), the indentation hardness HIT , the contact modulus Er, the indentation
modulus EIT and the ranges used for the fitting procedures. The variables are described
in detail in section 5.2.

• Save save parameters and results to given file.

• Graph display the unloading curve and the fitted curves. Stepwise zooming/unzooming
can be performed by selecting a range with the mouse and pressing the Zoom/ Unzoom
buttons. The graph is restored to its original size by the Restore button.

5.2 Procedure

The standard calculation consists of three steps

1. The residual depth must be determined as the intersection of the unloading curve and
the x-axis. This is implemented by fitting a straight line using a Deming fit with δ = 1,
see section A.2. For a brief description of the Deming fit see section A.2

F = ahphp + bhp (2)
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using total least squares. This fit is called the hp fit. The residual depth is calculated
as

hp = −bhp/ahp . (3)

The range of the data must be chosen adequately, the range 0.5 - 15 % Fmax is often a
reasonable value.

2. The main part of the unloading curve is fitted by a power law function

F = α(h− hp)m. (4)

This is converted to a total least squares fit in the variables using a Deming fit with
δ = 1, see section A.2

logF = logα+m log(h− hp). (5)

The range should not contain the lower part of the unloading range, a range of 40 - 98 %
Fmax is recommended as a first guess.

3. The auxiliary parameter ε is calculated from the power m

ε = m

1−
2(m− 1)Γ

(
m

2(m−1)

)
√
πΓ
(

1
2(m−1)

)
 , (6)

Γ is the Gamma-function.
The contact depth is calculated as

hc = hmax − ε
Fmax

S
(7)

and the slope at the maximum depth as

S = m
Fmax

hmax − hp
. (8)

4. The contact depth is used to evaluate the contact area A(hc). This can be used to find
the indentation hardness

HIT =
Fmax

A(hc)
. (9)

and together with the slope to find the contact modulus

Er =
√
π

S

2β
√
A(hc)

. (10)

For a comparison with Young’s modulus found in literature it is useful to calculate the
indentation modulus EIT

EIT =
1− ν2

1/Er − (1− ν2i )/Ei
. (11)

Here ν is the Poisson’s value of the sample and νi and Ei are the Poisson’s value and
the modulus of the indenter.
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6 Oliver Pharr with ODR

For a definition of the Oliver Pharr method see [1].
This method is shown unless the software was compiled using the NOFORTRAN option.

Figure 6: Oliver-Pharr analysis using orthogonal data regression

6.1 Window

The window consists of several blocks:

• Info displays the maximum depth and force during the indentation

• Parameters shows the selected range in nm and in % of the maximum force, the cor-
rection β and the fit button.

- The fitting range can be selected either using the mouse or typing in the range
entries. The range can be defined either in nm or in percent of the maximum force.
It is often recommended to use the range 40 - 98 % Fmax for the fit, see section
6.2.

- The parameter β accounts for any deviations from the axisymmetric case and is
used in the calculation of the reduced modulus in equation (10). Currently, the
default value is no correction β = 1.0. The value supplied by the user is saved in
the settings and can be reset to its default value.

- fit button, see section 6.2 for details of the calculation
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• Results displays all results in the following order: the residual depth hp, the power m of
the power law function, the parameter ε, the contact depth hc, the slope S, the contact
area Ap(hc), the indentation hardness HIT , the contact modulus Er, the indentation
modulus EIT and the ranges used for the fitting procedure. The variables are described
in detail in section 6.2. If the fittings procedure failed a warning is shown.

• Uncertainties show the uncertainty analysis window, see section 14.2.1.

• Show log Show the report about the fitting procedure in a separate window. The reports
are saved to files fit.log.op.err and fit.log.op.rpt.

• Save save parameters and results to given file.

• Graph display the unloading curve and the fitted curves. Stepwise zooming/unzooming
can be performed by selecting a range with the mouse and pressing the Zoom/ Unzoom
buttons. The graph is restored to its original size by the Restore button.

6.2 Procedure

This is a slight modification of the standard Oliver Pharr method described in section 5.2
using a better fitting procedure.

1. Fit the upper part of the unloading curve with a power law function

F = α(h− hp)m.

using orthogonal least squares as implemented in the package ODRPACK95 [2]. The
range should be approx. 40 - 98 % Fmax. All three parameters are fitted.

2. same as steps No. 3-4 in 5.2.

7 Tangent method

The method is based on the linear model as described in [3]. It is recommended only for use
with highly plastic materials where the depth of elastic recovery is less than 10 % of max.

7.1 Window

The window consists of several blocks:

• Info displays the maximum depth and force during the indentation

• Parameters shows the selected range in nm and in % of the maximum force, the cor-
rection β and the fit button.

- The fitting range can be selected either using the mouse or typing in the range
entries. The range can be defined either in nm or in percent of the maximum force.
It is often recommended to use the range 70 - 95 % Fmax for the fit, see section
7.2.
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Figure 7: Tangent method analysis

- The parameter β accounts for any deviations from the axisymmetric case and is
used in the calculation of the reduced modulus in equation (10). Currently, the
default value is the value for three-sided pyramides β = 1.034. The value supplied
by the user is saved in the settings and can be reset to its default value.

- fit button, see section 7.2 for details of the calculation

• Results displays all results in the following order: the contact depth hc, the slope S,
the contact area Ap(hc), the indentation hardness HIT , the contact modulus Er, the
indentation modulus EIT and the ranges used for the fitting procedure. The variables
are described in detail in section 7.2.

• Save save parameters and results to given file.

• Graph display the unloading curve and the fitted curves. Stepwise zooming/unzooming
can be performed by selecting a range with the mouse and pressing the Zoom/ Unzoom
buttons. The graph is restored to its original size by the Restore button.

7.2 Procedure

The tangent method uses a different approach to determine the slope of the unloading curve
at its maximum depth than the Oliver Pharr method.
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1. Fit the uppermost part of the unloading curve with a straight line using a Deming fit
with δ = σ2F /σ

2
h, see section A.2,

F = Sh+ q,

using total least squares. The range should be approx. 70 - 95 % Fmax.

2. Set ε = 0.75 and calculate the contact depth as

hc = hmax − εFmax/S. (12)

3. same as step No. 4 in 5.2.

8 Hertz method

The Hertz method is the application of the Hertzian model of elastic contact to the initial
stage of the loading curve [4]. It can be used either to estimate the modulus if the tip radius
is known or vice versa, depending what information is available.

Figure 8: Hertzian model analysis

8.1 Window

The window consists of several blocks:

• Info displays the maximum depth and force during the indentation

• Parameters shows the selected range in nm and the fit button.
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- The input variable can be chosen to be either the tip radius, the reduced modulus
or the indentation modulus and its value should be set accordingly.

- The fitting range can be selected either using the mouse or typing in the range
entries. The range must be chosen so that the behavior remains elastic and the fit
adequate.

- fit button, see section 8.2 for details of the calculation

• Results displays the results and the ranges used for the fitting procedure. The variables
are described in detail in section 8.2.

• Save save parameters and results to given file.

• Graph display the unloading curve and the fitted curves. Stepwise zooming/unzooming
can be performed by selecting a range with the mouse and pressing the Zoom/ Unzoom
buttons. The graph is restored to its original size by the Restore button.

8.2 Procedure

1. The Hertzian model predicts for the contact between sphere and halfspace the following
shape of the loading curve

F = ah3/2, (13)

with

a =
4

3
Er

√
R. (14)

This is fitted using ordinary least squares with an additional intercept possible, see
section A.3.

2. If the tip radius is given, the contact modulus is calculated as

Er =
3

4

a√
R
. (15)

For a comparison with Young’s modulus found in literature the indentation modulus
EIT (11) is useful

3. If the reduced modulus is given, the tip radius is calculated as

R =

(
3

4

a

Er

)2

(16)

4. If the indentation reduced modulus is given, the material parameters ν, νi and Ei are
used to convert it to the reduced modulus

Er =

(
1− ν2i
Ei

+
1− ν2

EIT

)−1
. (17)

from which the tip radius can be calculated as in the previous step.
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9 Hertz method with ODR

This is a modification of the Hertz method explained in section 8 and uses orthogonal distance
regression. The loading curve is fitted with a more general power function but the relationship
between the proportionality coefficient and the radius and modulus is assumed to stay the
same. If the resulting power differs from the theoretical value 1.5, this is an indicator that
the Hertzian model is not adequate. The results for radius or modulus in this case do not
make any physical sense.
This method is shown unless the software was compiled using the NOFORTRAN option.

Figure 9: Hertzian model with ODR analysis

9.1 Window

The window consists of several blocks:

• Info displays the maximum depth and force during the indentation

• Parameters shows the selected range in nm and the fit button.

- The input variable can be chosen to be either the tip radius, the reduced modulus
or the indentation modulus and its value should be set accordingly.

- The fitting range can be selected either using the mouse or typing in the range
entries. The range must be chosen so that the behavior remains elastic and the fit
adequate.

- Check box, whether or not the exponent should be fitted or fixed at the value 1.5,
see 9.2.
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- fit button, see section 9.2 for details of the calculation

• Results displays the results and the ranges used for the fitting procedure. The variables
are described in detail in section 9.2.

• Show log Show the report about the fitting procedure in a separate window. The reports
are saved to files fit.log.hz.err and fit.log.hz.rpt.

• Uncertainties show the uncertainty analysis window, see section 14.2.2.

• Save save parameters and results to given file.

• Graph display the unloading curve and the fitted curves. Stepwise zooming/unzooming
can be performed by selecting a range with the mouse and pressing the Zoom/ Unzoom
buttons. The graph is restored to its original size by the Restore button.

9.2 Procedure

1. The Hertzian model (13) is fitted with a more general function

F = γ(h− h0)n, (18)

using orthogonal least squares implemented in ODRPACK. The power n can be fixed
at the theoretical value 1.5.

2. Further steps are the same as steps 2 - 4 in section 8.2 with γ used instead of a.

10 Two slopes method

For a description of the two slopes method see [5].
This method is shown unless the software was compiled using the NOFORTRAN option.

10.1 Window

The window consists of several blocks:

• Info displays the maximum depth and force during the indentation

• Parameters shows the selected range in nm and in % of the maximum force, the cor-
rection β and the fit buttons for the indepedent fitting of the loading and unloading
curves.

- The fitting range can be selected either using the mouse or typing in the range
entries. The range can be defined either in nm or in percent of the maximum force.
It is often recommended to use the range 80 - 98 % Fmax for the fit, see section
10.2.

- The parameter β accounts for any deviations from the axisymmetric case and is
used in the calculation of the reduced modulus in equation (10). Currently, the
default value is no correction β = 1.0. The value supplied by the user is saved in
the settings and can be reset to its default value.
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Figure 10: Two slopes analysis using orthogonal data regression

- Check box, whether or not the exponent of the loading curve should be fitted or
fixed at the theoretical value 2, see 10.2.

- fit buttons, see section 10.2 for details of the calculation

• Results displays all results in the following order: the auxiliary depth parameter h0,
the power n of the power law loading function, the residual depth hp, the power m
of the power law unloading function, the parameter ε, the loading slope Sload, the
unloadingslope Sunload, the contact area Ap(hc), the indentation hardness HIT , the
contact modulus Er, the indentation modulus EIT and the ranges used for the fitting
procedures. The variables are described in detail in section 10.2. Warnings are displayed
if the fittings procedures failed.

• Uncertainties show the uncertainty analysis window, see section 14.2.1.

• Show log load Show the report about the fitting procedure of the loading curve in a
separate window. The reports are saved to files fit.log.load.err and fit.log.load.rpt.

• Show log unload Show the report about the fitting procedure of the unloading curve in a
separate window. The reports are saved to files fit.log.unload.err and fit.log.unload.rpt.

• Save save parameters and results to given file.
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• Graph display the unloading curve and the fitted curves. Stepwise zooming/unzooming
can be performed by selecting a range with the mouse and pressing the Zoom/ Unzoom
buttons. The graph is restored to its original size by the Restore button.

10.2 Procedure

The two slopes method combines the standard Oliver Pharr method and the quadratic loading
curve to avoid the need of the contact area.

1. Fit the upper part of the loading curve with a power law function

F = γ(h− h0)n.

using orthogonal least squares as implemented in the package ODRPACK95 [2]. The
range should be approx. 85 - 98 % Fmax. The exponent n can be kept fixed at its
theoretical value 2.

2. Fit the upper part of the unloading curve with a power law function

F = α(h− hp)m.

using orthogonal least squares as implemented in the package ODRPACK95 [2]. The
range should be approx. 85 - 98 % Fmax. All three parameters are fitted.

3. The auxiliary parameter ε is calculated from the power m as in (6)

4. The slopes at the maximum depth are calculated as

Sload = n
Fmax

hmax − h0
(19)

Sunload = m
Fmax

hmax − hp
(20)

5. The contact area, indentation hardness and contact modulus are calculated as

Ap(hc) = C0F
2
max

(
2Sunload − βεSload

SunloadSload

)2

(21)

HIT =
1

C0Fmax

(
SunloadSload

2Sunload − βεSload

)2

(22)

Er =
1

2βFmax

√
π

C0

S2
unloadSload

2Sunload − βεSload
(23)

with C0 the coefficient of the h2 term in the area calibration function and β a geometric
correction term. Currently, we use β = 1.

6. The indentation modulus can be calculated from (11)

11 F-h2 analysis

The analysis of F vs h2 follows [6, 7, 8].
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Figure 11: F vs h2 analysis

11.1 Window

The window consists of several blocks:

• Parameters allows the user to set the width of the moving average window. The value 1
corresponds to no smoothing. This value is saved in settings.

• Run perform calculation and display curve, see section 11.2.

• Save save parameters and results to given file.

• Graph

Top: display the loading curve and the smoothed curve.

Bottom: display the F/h2 and the dF/dh2 curves.

Stepwise zooming/unzooming can be performed by selecting a range with the mouse
and pressing the Zoom/ Unzoom buttons. The graph is restored to its original size by
the Restore button. Zooming in the two graphs is independent.

11.2 Procedure

1. We use a moving average with a fixed width and constant weight. This means we
substitute a value with its average with s values to the left and to the right, w = 2s+ 1

x̂i =
1

w

s∑
j=−s

xi+j .
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The value w = 1 corresponds to the original data. There is only one moving average
type defined for both depth and load. Increasing the value of w noise becomes less
influential but important small effects can get lost as well. Therefore, the value should
not be too large, below 11 is recommended.

2. The ratio F/h2 is calculated for for each data pair (ĥ, F̂ ) of the (smoothed) loading
curve and plotted as a function of the (smoothed) depth ĥ.

3. The derivative dF/dh2 is calculated for for each data pair (ĥ, F̂ ) of the (smoothed)
loading curve and plotted as a function of the (smoothed) depth ĥ. The derivative is
done numerically as the ratio of the derivatives of F and h with respect to the (time)step
or index i

dF

dh2
=

dF

di

(
dh2

di

)−1
.

The numerical derivatives are calculated using the three-point formula for equally spaced
data.

12 Pop-in detection

The pop-in effect is a reaction of the crystalline structure to load. Defects of the crystalline
structure occur during loading, these then reveal themselves as discontinuous jumps in the
depth at constant load. The critical load values are characteristic for the given orientation of
the given material and can be compared to theoretical predictions based on the knowledge of
the crystal lattice.

Figure 12: Pop-in detection
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12.1 Window

The window consists of several blocks:

• Info displays the maximum depth and force during the indentation

• Parameters allows the user to set the following parameters, the selected range in nm
and the fit button.

- Moving average window width the width of the moving average window. The value
1 corresponds to no smoothing.

- Derivative threshold for pop-in detection the minimum derivative to identify the
point as a pop-in.

- Derivative threshold for pop-in width determines how far to extend the pop-in once
it was identified.

- Minimum pop-in width minimum number of datapoints needed for a pop-in.

- Minimum pop-in height (in nm) minimum jump in height needed for a pop-in.

These values are saved in settings. Default values are provided, but most likely the user
will have to find proper values for each curve. For a detailed description see 12.2

• Run perform calculation and display curve, see section 12.2. Results displays the found
pop-in events, the load and depth at which they occurred and the jump in the depth
associated with it, see section 12.2.

• Save save parameters and results to given file.

• Graph

Top: display the loading curve and the smoothed curve.

Bottom: display the derivative of the depth with respect to the index (pseudo-time)
together with the two derivative thresholds.

Identified pop-ins are shown in color.
Stepwise zooming/unzooming can be performed by selecting a range with the mouse
and pressing the Zoom/ Unzoom buttons. The graph is restored to its original size by
the Restore button. Zooming in the two graphs is independent.

12.2 Procedure

There is no standardized procedure how to define pop-in events. We use here a brute force
direct method.

1. We use a moving average with a fixed width and constant weight. This means we
substitute a value with its average with s values to the left and to the right, w = 2s+ 1

x̂i =
1

w

s∑
j=−s

xi+j .

The value w = 1 corresponds to the original data. Increasing the value of w noise
becomes less influential but important small effects can get lost as well. Therefore, the
value should not be too large, below 11 is recommended.
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2. Calculate the derivative of the loading curve with respect to the index (pseudo-time).
This is the numerical derivative (in this case threee point derivative with equal steps)

dxi =
1

2
(xi+1 − xi−1),

where h is the step in the data.

3. Find the indices i for which xi is larger then the Derivative threshold for pop-in detection

4. Group the indices found in the previous step into consecutive groups.

5. Enlarge each group of indices to the left and to the right to include all values larger
than Derivative threshold for pop-in width.

6. For each group, check that the difference between the leftmost and righmost index is at
least Minimum pop-in width.

7. For each group, check that the difference in depth between the leftmost and righmost
point is at least Minimum pop-in height.

8. For each group, find the average load for the range between leftmost and rightmost, the
depth at the leftmost point (beginning of the pop-in), the difference in height between
the leftmost and rightmost point and the indices.

13 Elastic/plastic work

The elastic and plastic work can be calculated.

13.1 Window

The window consists of several blocks:

• Parameters allows the user to set the width of the moving average window. The value 1
corresponds to no smoothing. This value is saved in settings.

• Run perform calculation and display curve, see section 11.2.

• Save save parameters and results to given file.

• Graph display the (smoothed) indentation curve. Stepwise zooming/unzooming can
be performed by selecting a range with the mouse and pressing the Zoom/ Unzoom
buttons. The graph is restored to its original size by the Restore button.

13.2 Procedure

1. We use a moving average with a fixed width and constant weight. This means we
substitute a value with its average with s values to the left and to the right, w = 2s+ 1

x̂i =
1

w

s∑
j=−s

xi+j .
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Figure 13: Elastic and plastic work calculation

The value w = 1 corresponds to the original data. There is only one moving average
type defined for both depth and load and for all three parts of the curve (load, unload,
hold). Increasing the value of w noise becomes less influential but important small
effects can get lost as well.

2. We use the simple trapezoidal rule for the integration of each curve

I =

n∑
i=2

1

2
(yi − yi−1)(xi − xi−1) (24)

3. The elastic work is the area under the unloading curve, the plastic work is the area
enclosed by the whole indentation curve. The energy ratio is the ratio of the elastic
work and the total work

We = Iunload

Wp = Iload + Ihold − Iunload

ηIT =
We

We +Wp

(25)

14 Uncertainties

Uncertainties can be calculated for the Oliver Pharr method (either fitting procedure), the
tangent method and the Hertz method. The uncertainty sources are the noise in the depth and
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load, the uncertainty in the tip radius (Hertz method) and the uncertainties in the material
parameters (Poisson’s ratio, Young’s modulus and Poisson’s ratio of indenter). These are
treated by the Gaussian propagation of uncertainties. The Monte Carlo method is used to
treat the noise of depth load. In all cases we use a normal distribution and assume zero
correlation (also between different depth values, i.e. ρ(hi, hj) = 0). The uncertainty of the
contact point is demonstrated separately by explicitly performing the evaluation of data with
different contact points and comparing them. The uncertainty of the choice of the fitting
interval is not implemented yet.

14.1 Window

In all cases, pressing the Uncertainties button opens a separate window with the following
blocks

• Uncertainties in input values the user can calculate the uncertainties and the individ-
ual contributions to the contact depth and area, indentation hardness and modulus and
contact modulus. For the Hertz method only the uncertainties of the contact and inden-
tation modulus are available. These contributions are calculated using the propagation
of uncertainties [9]. Details are in sections 14.2.1, 14.2.2, 14.2.3.

• Uncertainties due to choice of contact point shows results, that would be obtained, if the
contact point had been chosen differently. In many cases it is non-trivial how to choose
the contact point, so this can be a significant contribution to the overall uncertainty.

• Save Save the resuls of the uncertainty analysis, including the main results of the cor-
responding main calculation, as the uncertainty analysis refers only to this calculation.

• Monte Carlo calculation of uncertainties set the number of iterations and launch the
calculation of the uncertainties using the Monte Carlo method [10, 11]. In [10, 11] a
minimum value of 10 000 is recommended, however, results obtained with smaller values
can be used with proper care as a first guess. For ODR, one should start with approx.
100, and then gradually increase, as this is significantly more time consuming. The
procedure is described in section 14.4.

Only one Uncertainty window may be open for each method. Values of uncertainties are
saved in (and loaded from) the settings file for future use.

14.2 Gaussian propagation of uncertainties

The standard treatment to uncertainties is described in [9]. Here we use only the most
important results.
Let two quantities Y1 and Y2 be estimated by y1 and y2 and depend on a set of uncorrelated
variables X1, X2, . . . , XN . Let u2(xa) be the estimated variance of the estimate xa of Xa.
Then the estimated variance associated with yi is given by

u2(yi) =
N∑
a=1

(
∂Yi
∂xa

)2

u2(xa) (26)
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and the estimated covariance associated with y1 and y2 is given by

u(yi, yj) =

N∑
a=1

∂Yi
∂xa

∂Yj
∂xa

u2(xa). (27)

Let Z be estimated by z and depend on the correlated quantities Yi, i = 1, . . . ,M . Let u2(yi)
be the estimated variance of the estimate yi of Yi and u(yi, yj) the estimate of the covariance
associated with yi and yj for i 6= j. Then the estimated variance associated with z is

u(z)2 =

M∑
i=1

(
∂Z

∂yi

)2

u2(yi) +

M∑
i=1

M∑
j=1,j 6=i

∂Z

∂yi

∂Z

∂yj
u(yi, yj) (28)

The covariance of variables Zs depending on the independent random variables Xi through
intermediate variablse Ya can be computed as.

cov(Zs, Zt) =

n∑
a=1

∂Zs
∂xa

∂Zt
∂xa

u(xa)
2 (29)

=
N∑
a=1

M∑
i=1

∂Zs
∂yi

∂Yi
∂xa

M∑
j=1

∂Zt
∂yj

∂Yj
∂xa

u(xa)
2 (30)

=
M∑
i=1

M∑
j=1

∂Zs
∂yi

∂Zt
∂yj

cov(yi, yj) (31)

In our case the independent variables Xa are the depth values hi, load values Fi. We
assume that they are all have a normal distribution function with the same variance, i.e.

u(hi) = u(h), i = 1, . . . , n

u(Fi) = u(F ), i = 1, . . . , n

Equation (26) can then be written as the sum of two terms: the sum of the contributions
from the depth data and from the force data

u(y)2 =
n∑
i=1

(
∂Y

∂hi

)2

u2(hi) +
n∑
i=1

(
∂Y

∂hi

)2

u2(hi)

= u(y;h)2 + u(y;F )2

u(ya, yb) =
n∑
i=1

∂Ya
∂hi

∂Yb
∂hi

u2(hi) +
n∑
i=1

∂Ya
∂Fi

∂Yb
∂Fi

u2(Fi)

= cov(ya, yb;h) + cov(ya, yb;F ).

For the indentation modulus we additionally need the tip radius R, Poisson’s ratio ν,
Young’s modulus of the indenter Ei and Poisson’s value of the indenter νi. We assume that
they are independent and have a normal distribution.
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14.2.1 Uncertainty propagation for Oliver Pharr method with ODR

The package ODRPACK does not allow to separate the contributions from depth and load un-
certainty. The results which correspond to a fit using only the uncertainties in the depth, resp.
load are shown instead of the contributions and the result from a fit using both uncertainties
is shown instead of the combined uncertainty.

1. Obtain the uncertainties of m and hp, as well as their covariance from ODRPACK, see
A.1.

2. Calculate the uncertainty of ε from equation (6).
For ε we find

u(ε;h) = u(m;h)

[
ε

m
− ε−m
m− 1

− ε−m
2(m− 1)2

(ψ0(z)− ψ0(w))

]
, (32)

with z = m
2(m−1) , and w = 1

2(m−1) and similarly for u(ε;F ). The derivative dε/dm is
needed in further calculations

∂ε

∂m
=

ε

m
+
ε−m
m− 1

− ε−m
2(m− 1)2

(ψ0(z)− ψ0(w)) (33)

3. For S we get

u(S;h)2 =

(
S

m

)2

u(m;h)2 +

(
S

hmax − hp

)2

u(h)2 +

+

(
S

hmax − hp

)2

u(hp;h)2 +
2S2

m(hmax − hp)
cov(m,hp;h)

u(S;F )2 =

(
S

m

)2

u(m;F )2 +

(
S

Fmax

)2

u(F )2 +

+

(
S

hmax − hp

)2

u(hp;F )2 +
2S2

m(hmax − hp)
cov(m,hp;F )

(34)

For hc we obtain

u(hc;h)2 = (hmax − hp)2
(
ε

m2
− 1

m

∂ε

∂m

)2

u(m;h)2 +
(

1− ε

m

)2
u(hmax;h)2 +

( ε
m

)2
u(hp;h)2 +

+2 (hmax − hp)

(
ε

m2
− 1

m

∂ε

∂m

)
ε

m
cov(m,hp;h) (35)

u(hc;F )2 = (hmax − hp)2
(
ε

m2
− 1

m

∂ε

∂m

)2

u(m;F )2 +
( ε
m

)2
u(hp;F )2 +

+2 (hmax − hp)

(
ε

m2
− 1

m

∂ε

∂m

)
ε

m
cov(m,hp;F ) (36)

4. Calculate the uncertainties of Ap(hc), HIT and Er from equations (1) to (10). The
uncertainty of Ap(hc) for a polynom (1) is simple

u(Ap(hc)) =
∂Ap(hc)

∂hc
u(hc) =

∑
k

kckh
k−1
c u(hc) (37)
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Uncertainties in the coefficients of the polynom are not taken into account.

5. The two contributions to the hardness are

u(HIT;h) =
HIT

Ap(hc)

∂Ap

∂hc
u(hc;h) (38)

u(HIT;F )2 =

(
HIT

Fmax

)2

u(F )2 +

(
HIT

Ap(hc)

)2(∂Ap

∂hc

)2

u(hc;F )2

(39)

The two contributions to the contact modulus are

u(Er;h)2 =

(
Er

S

)2

u(S;h)2 +

(
Er

2Ap(hc)

)2

u(Ap(hc);h)2 +

−Er

S

Er

Ap(hc)

∂Ap

∂hc
cov(S, hc;h) (40)

u(Er;F )2 =

(
Er

S

)2

u(S;F )2 +

(
Er

2Ap(hc)

)2

u(Ap(hc);F )2 +

−Er

S

Er

Ap(hc)

∂Ap

∂hc
cov(S, hc;F ) (41)

where the covariances cov(S, hc;h) and cov(S, hc;F ) are

cov(S, hc;h) = − S(1− ε)
hmax − hp

u(h)2 − S (hmax − hp)

m

∂ε

∂m
u(m;h)2

+
Sε

hmax − hp
u(hp;h)2 +

+S

(
ε

m
− ∂ε

∂m

)
cov(hp,m;h) (42)

cov(S, hc;F ) = − S
m

(hmax − hp)
∂ε

∂m
u(m;F )2 +

Sε

hmax − hp
u(hp, F )2

+S

(
ε

m
− ∂ε

∂m

)
cov(hp,m;F ) (43)

6. Combine the uncertainties originating in depth and load u(Er;h) and u(Er;F ) with the
uncertainties of the material parameters ν, νi and Ei. The contributions are

u(EIT; ν) =
2ν

1− ν2
EITu(ν) (44)

u(EIT; νi) =
2νi

1− ν2
E2

IT

Ei
u(νi) (45)

u(EIT;Ei) =
(1− ν2i )

(1− ν)2
E2

IT

E2
i

u(Ei) (46)

u(EIT;Er) =
E2

IT

E2
r (1− ν2)

√
u(Er;h)2 + u(Er;F )2 (47)
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14.2.2 Uncertainty propagation for Hertz method with ODR

1. Calculate the uncertainty of the proportionality factor γ in (18), see section A.1

2. If the tip radius was given, the contributions to the uncertainty of the contact modulus
are

u(Er;h) =
Er

γ
u(γ;h)

u(Er;F ) =
Er

γ
u(γ;F )

u(Er;R) =
Er

2R
u(R)

3. Calculate the uncertainty of EIT as in step 6 in 14.2.1.

4. If the contact modulus was given the contributions to the uncertainty of the radius are

u(R;h) = 2
R

γ
u(γ;h)

u(R;F ) = 2
R

γ
u(γ;F )

u(R;Er) = 2
R

Er
u(Er)

5. If the indentation modulus was given the uncertainties can be expressed in terms of the
contact modulus

Er =

[
1− ν2

EIT
+

1− ν2i
Ei

]−1
as

u(R;h) = 2
R

γ
u(γ;h)

u(R;F ) = 2
R

γ
u(γ;F )

u(R; ν) = 4R
νEr

EIT
u(ν)

u(R; νi) = 4R
νiEr

Ei
u(νi)

u(R;Ei) = 2
Er

E2
i

(1− ν2i )u(Ei)

u(R;EIT) = 2
Er

E2
IT

(1− ν2)u(EIT)

14.2.3 Uncertainty propagation for two slopes method with ODR

The package ODRPACK does not allow to separate the contributions from depth and load
uncertainty. The results which correspond to a fit using only the uncertainties in the depth,
resp. load are shown instead of the contributions and the result from a fit using both un-
certainties is shown instead of the combined uncertainty. In the following we assume that
neither fit includes the (hmax, Fmax) point and that the fits are independent.
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1. Obtain the uncertainties of n, h0, m, hp, and their covariance from ODRPACK, see
A.1.

2. Same as step 2 in section 14.2.1.

3. The unloading slope Sunload is the same as in step 3 in section 14.2.1. The uncertainty
of the loading slope is analoguous to (34)

u(Sload;h)2 =

(
Sload
n

)2

u(n;h)2 +

(
Sload

hmax − h0

)2

u(h)2 +

+

(
Sload

hmax − h0

)2

u(h0;h)2 +
2S2

load

n(hmax − h0)
cov(n, h0;h)

u(Sload;F )2 =

(
Sload
n

)2

u(n;F )2 +

(
Sload
Fmax

)2

u(F )2 +

+

(
Sload

hmax − h0

)2

u(h0;F )2 +
2S2

load

n(hmax − h0)
cov(n, h0;F )

(48)

Furthermore we will need the covariance of Sunload and ε

cov(Sunload, ε;h) =
∂ε

∂m
cov(Sunload,m;h)

=
∂ε

∂m

[
m

Fmax

(hmax − hp)2
cov(hp,m;h) +

Fmax

hmax − hp
u(m;h)2

]
cov(Sunload, ε;F ) =

∂ε

∂m
cov(Sunload,m;F )

=
∂ε

∂m

[
m

Fmax

(hmax − hp)2
cov(hp,m;F ) +

Fmax

hmax − hp
u(m;F )2

]
(49)

4. It is practical to calculate the uncertainties of the auxiliary term K given as

K =
2Sunload − βεSload

SunloadSload
=

2

Sload
− βε

Sunload
(50)

These are

u(K;h)2 =

(
−2

S2
load

)2

u(Sload;h)2 +

(
βε

S2
unload

)2

u(Sunload;h)2 +

(
β

Sunload

)2

u(ε;h)2

+
βε

S2
unload

cov(Sunload, ε;h)

u(K;F )2 =

(
−2

S2
load

)2

u(Sload;F )2 +

(
βε

S2
unload

)2

u(Sunload;F )2 +

(
β

Sunload

)2

u(ε;F )2

+
βε

S2
unload

cov(Sunload, ε;F )

(51)
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We will also need the covariance

cov(Sunload,K;h) =
βε

S2
unload

u(Sunload;h)2 +
−β

Sunload
cov(Sunload, ε;h)

cov(Sunload,K;F ) =
βε

S2
unload

u(Sunload;F )2 +
−β

Sunload
cov(Sunload, ε;F )

(52)

5. In terms of K the uncertainties of the contact area, hardness and contact modulus can
be expressed as

u(A;h) = A
u(K;h)

K

u(A;F )2 =

(
2A

u(K;h)

K

)2

+

(
2A

u(Fmax)

Fmax

)2

(53)

u(HIT;h) = 2A
u(K;h)

K

u(HIT;F )2 =

(
2A

u(K;F )

K

)2

+

(
A
u(Fmax)

Fmax

)2

(54)

and

u(Er;h)2 =

(
Er
u(Sunload;h)

Sunload

)2

+

(
Er
u(K;h)

K

)2

− E2
r

cov(Sunload,K;h)

KSunload

u(Er;F )2 =

(
Er
u(Sunload;F )

Sunload

)2

+

(
Er
u(K;F )

K

)2

+

(
Er
u(F )

Fmax

)2

−E2
r

cov(Sunload,K;F )

KSunload
(55)

6. Same as step 6 in section 14.2.1.

14.3 Uncertainty due to choice of contact point

It may not be always clear where exactly the contact between the indenter and the sample
occurs. This induces an uncertainty of type B which must be estimated. In order to facilitate
this, we explicitly show how the results change when the contact point was chosen to be more
to the left or to the right by a certain amount of points. Zero contact point shift means
the original contact point was used. A positive (negative) contact point N shift means the
Nth neighboring point to the right (left) was used instead. This corresponds to a shift by
(∆h,∆F ) in the unloading data; data are added or removed from the loading data as well as
shifted by (∆h,∆F ). The ranges for the interval of the fitting procedures are transformed.
If they were chosen in the length regime, either by mouse or by input in the entries, they are
shifted by δh. Percentages of the maximum forces are not transformed, since the maximum
force is already shifted.
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14.4 Monte Carlo calculation of uncertainties

The calculation is run by clicking the Monte Carlo button in the Uncertainty window. After
finishing a window containg the results is shown. The calculation itself is described in 14.4.2.
A more detailed description of the use of the Monte Carlo method for the evaluation of
uncertainties is in [10, 11].

14.4.1 Window

• Input of Monte Carlo simulation shows the input values with which the calculation was
run.

• Results of Monte Carlo simulation shows the mean and standard deviation calculated
from the resulting PDFs. A histogram can be shown by clicking on the histogram button
for each variable.

• Save save the results of this Monte Carlo simulation. This includes the mean, standard
deviation, histogram and full data for each output variable.

Only one Monte Carlo calculation window may be open for each method. It is closed when
the Uncertainty window is closed and results are discarded.

14.4.2 Monte Carlo calculation of uncertainties: Description of method

A more detailed description of the use of the Monte Carlo method for the evaluation of uncer-
tainties is in [10, 11]. The procedure is based on the propagation of probability distribution
functions (PDF) of the input variables and obtaining the PDF of the output variable. The
input variables are varied according to a given PDF and the output variables are calculated in
each case. For a large enough number of trials we obtain a PDF of the output variables, which
can be further analyzed. Here we calculate only the mean and the standard deviation and
construct a simple histogram. This method is very well suited for complicated measurement
models, especially non-linear models or non-Gaussian PDFs of the input variables. In simple
cases, it gives the same results as the Gaussian law of propagation. Two Monte Carlo method
has two significant drawbacks compared to the Gaussian law of propagation: Firstly, it can
become very time consuming, especially when several input variables are present. Secondly,
it is impossible to separate the uncertainty contributions from different input variables. Dif-
ferent calculations must be made, thus increasing even more the time needed. Therefore, it
is currently used only for the uncertainty in the depth and the load. The uncertainties in
the material parameters and the tip radius (Hertz model) can be described sufficiently by
the Gaussian law. The model uses independent, normal PDFs with constant variance for all
depth and load values. Only values contained in the fitting range of the main calculation
are considered, i.e., the fitting range is not determined for every individual calculation. This
leads to a significant speed up. For well-behaved data, this should not cause any significant
errors.
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A Data fitting

We use types of data fitting: the Deming fit for straight lines, the least squares fit of the 3/2
power and orthogonal distance regression [12] for power law functions.
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A.1 Orthogonal distance regression

Orthogonal distance regression, also called generalized least squares regression, errors-in-
variables models or measurement error models, attempts to tries to find the best fit taking
into account errors in both x- and y- values. Assuming the relationship

y∗ = f(x∗;β) (56)

where β are parameters and x∗ and y∗ are the “true” values, without error, this leads to a
minimization of the sum

min
β,δ

n∑
i=1

[
(yi − f(xi + δ;β))2 + δ2i

]
(57)

which can be interpreted as the sum of orthogonal distances from the data points (xi, yi) to
the curve y = f(x, β). It can be rewritten as

min
β,δ,ε

n∑
i=1

[
ε2i + δ2i

]
(58)

subject to
yi + εi = f(xi + δi;β). (59)

This can be generalized to accomodate different weights for the datapoints and to higher
dimensions

min
β,δ,ε

n∑
i=1

[
εTi w

2
εεi + δTi w

2
δδi
]
,

where ε and δ are m and n dimensional vectors and wε and wδ are symmetric, positive
diagonal matrices. Usually the inverse uncertainties of the data points are chosen as weights.
We use the implementation ODRPACK [12].

There are different estimates of the covariance matrix of the fitted parameters β. Most of
them are based on the linearization method which assumes that the nonlinear function can be
adequately approximated at the solution by a linear model. Here, we use an approximation
where the covariance matrix associated with the parameter estimates is based

(
JTJ

)−1
,

where J is the Jacobian matrix of the x and y residuals, weighted by the triangular matrix
of the Cholesky factorization of the covariance matrix associated with the experimental data.
ODRPACK uses the following implementation [13]

V̂ = σ̂2

[
n∑
i=1

∂f(xi + δi;β)

∂βT
w2
εi

∂f(xi + δi;β)

∂β
+
∂f(xi + δi;β)

∂δT
w2
δi

∂f(xi + δi;β)

∂δ

]
(60)

The residual variance σ̂2 is estimated as

σ̂2 =
1

n− p

n∑
i=1

[
(yi − f(xi + δ;β))T w2

εi (yi − f(xi + δ;β)) + δTi w
2
δi
δi

]
(61)

where β ∈ Rp and δi ∈ Rm, i = 1, . . . , n are the optimized parameters,
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A.2 Total least squares - Deming fit

The Deming fit is a special case of orthogonal regression which can be solved analytically. It
seeks the best fit to a linear relationship between the x- and y-values

y∗ = ax∗ + b, (62)

by minimizing the weighted sum of (orthogonal) distances of datapoints from the curve

S =
n∑
i=1

1

σ2ε
(yi − ax∗i − b)2 +

1

σ2η
(xi − x∗i )2,

with respect to the parameters a, b, and x∗i . The weights are the variances of the errors in the
x-variable (σ2η) and the y-variable (σ2ε ). It is not necessary to know the variances themselves,
it is sufficient to know their ratio

δ =
σ2ε
σ2η
. (63)

The solution is

a =
1

2sxy

[
syy − δsxx ±

√
(syy − δsxx)2 + 4δs2xy

]
(64)

b = ȳ − ax̄ (65)

x∗i = xi +
a

δ + a2
(yi − b− axi) , (66)

where

x̄ =
1

n

n∑
i=1

xi (67)

ȳ =
1

n

n∑
i=1

yi (68)

sxx =
1

n

n∑
i=1

(xi − x̄)2 (69)

syy =
1

n

n∑
i=1

(yi − ȳ)2 (70)

sxy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ). (71)

A.3 Least squares - 3/2 power fit

We seek the best fit
y = ax3/2 + b, (72)

by minimizing the sum of (vertical) distances of datapoints from the curve

S =
n∑
i=1

(yi − ax3/2i − b)2,
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with respect to the parameters a, b. The solution is

a =
x3/2y − x3/2ȳ

x3 −
(
x3/2

)2 (73)

b = ȳ − ax3/2 (74)

where

x3/2y =
1

n

n∑
i=1

x
3/2
i yi (75)

x3/2 =
1

n

n∑
i=1

x
3/2
i (76)

x3 =
1

n

n∑
i=1

x3i (77)

ȳ =
1

n

n∑
i=1

yi (78)
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